At the Institute of Energy Systems and Technology, innovative energy supply processes and concepts based on thermochemical conversion are being developed. Here, the main goals are climate neutrality and environmental compatibility, while at the same time ensuring security of supply and price stability.
I am pleased to welcome you to our website.
Our team at the Institute of Energy System and Technology has the vision of a fully sustainable energy supply. To achieve this goal, we conduct research in this field passionately and share our expertise and passion with our students.
I hope, you will find all desired information. For further questions, do not hesitate to contact us personally, via phone or email.
Mobile Carbonate Looping Anlage
Juni 20, 2024
Anhand des Carbonate Looping Verfahrens (CaL) untersucht das Projekt CARMEN die CO2-Abscheidung bei verschiedenen Industriepartnern.
Unter Leitung der TU Darmstadt wird in dem vom BMWK geförderten Projekt CARMEN an einem effizienten CO2-Abscheideverfahren gearbeitet. Im Rahmen des Projektes wird eine mobile Anlage entworfen, die bei fünf Industriepartnern unter realen Bedingungen genauer untersucht wird. Auf diese Weise könnten zukünftig energieintensive Branchen wie die Zement- oder Papierindustrie CO2-neutral produzieren.
HOPES – Sieger:in Hessischer Gründerpreis 2023 | Gründung aus der Hochschule
November 24, 2023
Herzlichen Glückwunsch HOPES Energy! Das Startup aus dem Fachgebiet Energiesysteme und Energietechnik (EST) ist Sieger des Hessischen Gründerpreises 2023 in der Kategorie „Gründung aus der Hochschule“.
Recommended external content
We have selected external content from YouTube for you and would like to show it to you right here. To do this, you must reveal it with one click. You can hide the external content at any time with another click.
I agree to external content from YouTube being shown to me. This may result in personal data being transmitted to third-party platforms. You can find more information in our Privacy Policy.
hr, hessenschau, 10.01.2015
Anthropogenic CO₂ emissions are the main driver of climate change. One possibility to reduce these emissions is the (Carbon Capture and Storage, CCS). Such processes have been investigated and optimized for several years at the Institute of Energy Systems & Technology. Experimental considerations are undertaken in the capture and storage of CO₂ formed in power generation and industrial processes , allowing for the investigation of different processes in the semi-industrial scale, which was put into operation in 2010. The process presented in the given video, Carbonate Looping, distinguishes itself due to its low specific energy demand required for carbon capture and the possibility of retrofitting it to existing plants, such as conventional power plants. Apart from CO₂ reductions, coupling the given process with biomass combustion or waste incineration allows for negative CO₂ emissions. 1 MWₜₕ pilot plant
Sat.1, 17:30 Sat.1, 06.05.2019
Apart from the approach to store captured CO₂ (CCS), it is possible to utilize the (Carbon Capture and Utilization, CCU), thereby substituting fossil carbon sources in other processes. To achieve this, the captured CO₂ can be converted to methanol, an important base chemical, in the presence of hydrogen. In the subsequent process steps other chemicals or fuels can be synthesized from this highly versatile precursor. The process described in the given video is of special interest due to the increase of the share of fluctuating, renewable energy carriers in the electricity market. At peak renewable energy supply times, the electricity produced in waste incineration plants, which cannot be sold on the saturated electricity market, can instead be used for hydrogen production via water electrolysis. Through this, a continuous full-load operation and an ensuing high plant efficiency is guaranteed. Due to the large share of substances of biogenic origin contained in municipal waste, this process directly contributes to the de-carbonization of the chemical industry. CO₂ captured from power plant and industrial processes